If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-6x-729=0
a = 1; b = -6; c = -729;
Δ = b2-4ac
Δ = -62-4·1·(-729)
Δ = 2952
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2952}=\sqrt{36*82}=\sqrt{36}*\sqrt{82}=6\sqrt{82}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{82}}{2*1}=\frac{6-6\sqrt{82}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{82}}{2*1}=\frac{6+6\sqrt{82}}{2} $
| 1+r/3=-2 | | 6y+y+24=180 | | 9+2x-x^2=2x | | -4-5v=21 | | (9×10)×e=9×(10×5) | | p2-12p-45=0 | | 3x+2=8-3(2-x) | | 2r-3=-19 | | 10x-1=2x+5 | | 3(3m-1)=35 | | 8w-14=122 | | (3x+5)÷(2x+1)=1/3 | | 19=3kH | | 1,2(1+x)=7 | | 6-2y=-7 | | x+x+26=65 | | x=x+26=65 | | 2x+(x+4)=(x-3)+(x-3) | | 28-q=2 | | –4−2c=–3c | | 7x+20=220-60 | | x6-5=6x | | 3x-5+4=180 | | 4(x-12)-7=29 | | .8=x-5 | | a/7+11=9 | | 0.12x(2x-5)+3x=81 | | 3x-65=14 | | 3/x=x/48 | | 3x/2-4=1/3 | | 1070-x=x+50 | | 3(x-5)+5(x-3)=4(x-2)-3(x+1)-7 |